If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+19x-54=0
a = 2; b = 19; c = -54;
Δ = b2-4ac
Δ = 192-4·2·(-54)
Δ = 793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{793}}{2*2}=\frac{-19-\sqrt{793}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{793}}{2*2}=\frac{-19+\sqrt{793}}{4} $
| 9x^2+167x+728=0 | | √x-2-√x-2=0 | | 6x-3x=2+4 | | 3/(5)x+1/2=7/6 | | x-(x*0.9)=10000 | | -4/5a=20 | | 0.5=30+0.5q | | X²+15x=-56 | | p=30+30 | | 2x^2-24x=x-2x | | 2^x+4x=20 | | 3r^2-24r-315=0 | | 9/7=x/4 | | x+12−10=4−6 | | 4/9x=27 | | x+.05x=418.85 | | 2×+4x=20 | | 2/5=6/x+11 | | 8x-3+(7x-(3(x+5)+7))+7))=7(x+8 | | a0=0 | | 2x-45/31=-1 | | 12.36=12+s/100(12) | | 2p^2+20+50=0 | | -18+5x=32 | | -(8x-(17x+1))=1+(8x+7) | | -6x^2-140x+320=0 | | 320-104x-6x^2=0 | | 6/7=5/6x | | -6x2x=40 | | 2x+4x+5x+3=x | | (4-v)(2v+5)=0 | | a=0=a=-a |